Hierarchical semantic structures, naturally existing in real-world datasets, can assist in capturing the latent distribution of data to learn robust hash codes for retrieval systems. Although hierarchical semantic structures can be simply expressed by integrating semantically relevant data into a high-level taxon with coarser-grained semantics, the construction, embedding, and exploitation of the structures remain tricky for unsupervised hash learning. To tackle these problems, we propose a novel unsupervised hashing method named Hyperbolic Hierarchical Contrastive Hashing (HHCH). We propose to embed continuous hash codes into hyperbolic space for accurate semantic expression since embedding hierarchies in hyperbolic space generates less distortion than in hyper-sphere space and Euclidean space. In addition, we extend the K-Means algorithm to hyperbolic space and perform the proposed hierarchical hyperbolic K-Means algorithm to construct hierarchical semantic structures adaptively. To exploit the hierarchical semantic structures in hyperbolic space, we designed the hierarchical contrastive learning algorithm, including hierarchical instance-wise and hierarchical prototype-wise contrastive learning. Extensive experiments on four benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art unsupervised hashing methods. Codes will be released.
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
人工智能(AI)为简化Covid-19诊断提供了有前景的替代。然而,涉及周围的安全和可信度的担忧阻碍了大规模代表性的医学数据,对临床实践中训练广泛的模型造成了相当大的挑战。为了解决这个问题,我们启动了统一的CT-Covid AI诊断计划(UCADI),其中AI模型可以在没有数据共享的联合学习框架(FL)下在每个主机机构下分发和独立地在没有数据共享的情况下在每个主机机构上执行。在这里,我们认为我们的FL模型通过大的产量(中国测试敏感性/特异性:0.973 / 0.951,英国:0.730 / 0.942),与专业放射科医师的面板实现可比性表现。我们进一步评估了持有的模型(从另外两家医院收集,留出FL)和异构(用造影材料获取)数据,提供了模型所做的决策的视觉解释,并分析了模型之间的权衡联邦培训过程中的性能和沟通成本。我们的研究基于来自位于中国和英国的23家医院的3,336名患者的9,573次胸部计算断层扫描扫描(CTS)。统称,我们的工作提出了利用联邦学习的潜在保留了数字健康的前景。
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy $\mathcal{M}_i$ and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source $\mathcal{M}_i$. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
translated by 谷歌翻译
Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
The past two decades have seen increasingly rapid advances in the field of multi-view representation learning due to it extracting useful information from diverse domains to facilitate the development of multi-view applications. However, the community faces two challenges: i) how to learn robust representations from a large amount of unlabeled data to against noise or incomplete views setting, and ii) how to balance view consistency and complementary for various downstream tasks. To this end, we utilize a deep fusion network to fuse view-specific representations into the view-common representation, extracting high-level semantics for obtaining robust representation. In addition, we employ a clustering task to guide the fusion network to prevent it from leading to trivial solutions. For balancing consistency and complementary, then, we design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation. These modules are incorporated into a unified method known as CLustering-guided cOntrastiVE fusioN (CLOVEN). We quantitatively and qualitatively evaluate the proposed method on five datasets, demonstrating that CLOVEN outperforms 11 competitive multi-view learning methods in clustering and classification. In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors. Furthermore, the visualization analysis shows that CLOVEN can preserve the intrinsic structure of view-specific representation while also improving the compactness of view-commom representation. Our source code will be available soon at https://github.com/guanzhou-ke/cloven.
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
The lack of efficient segmentation methods and fully-labeled datasets limits the comprehensive assessment of optical coherence tomography angiography (OCTA) microstructures like retinal vessel network (RVN) and foveal avascular zone (FAZ), which are of great value in ophthalmic and systematic diseases evaluation. Here, we introduce an innovative OCTA microstructure segmentation network (OMSN) by combining an encoder-decoder-based architecture with multi-scale skip connections and the split-attention-based residual network ResNeSt, paying specific attention to OCTA microstructural features while facilitating better model convergence and feature representations. The proposed OMSN achieves excellent single/multi-task performances for RVN or/and FAZ segmentation. Especially, the evaluation metrics on multi-task models outperform single-task models on the same dataset. On this basis, a fully annotated retinal OCTA segmentation (FAROS) dataset is constructed semi-automatically, filling the vacancy of a pixel-level fully-labeled OCTA dataset. OMSN multi-task segmentation model retrained with FAROS further certifies its outstanding accuracy for simultaneous RVN and FAZ segmentation.
translated by 谷歌翻译